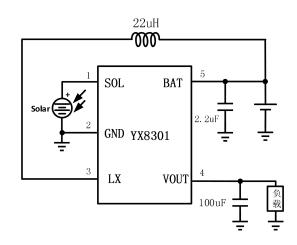


DC-DC太阳能光控升压控制器

1. 特性

- ❖ 输出电压 3.3V
- ❖ 最大输出电流可达 300mA
- ❖ 静态工作电流低至 16uA 以下
- ❖ 高效率: 90%
- ❖ 输出电压高精度: ±2%
- ❖ 低纹波低噪声
- ❖ 最大工作频率: 350KHz (典型值)
- ❖ SOT23-5 封装

2. 描述

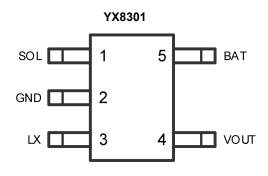

YX8301采用CMOS工艺制造的PFM开关型DC-DC升压转换,该芯片通过特有的电路结构极大的改善了开关电路固有的噪声问题,减小了其对周围电路的干扰,振荡频率为350KHz(典型值)。

YX8301外部仅需要电容及电感即可完成应用。当进 行太阳能充电时,极低的工作电流可以最大程度的降低 系统功耗。

3. 应用范围

- ❖ 要求提供电压比电池所能提供电压高的设备的电源部分
- ❖ 可充电电源设备
- ❖ 恒压驱动设备

4. 典型应用



5. 订购信息

器件型号	订购号	封装描述	环境温度	封装标记	包装选择	备注
YX8301	YX8301ST25RAXX	SOT23-5	-40°C to +125°C		Tape and Reel	

6.引脚信息

SOT23-5

表 1. 引脚描述

引脚	名称	引脚功能描述	
1	SOL	太阳能电池板正极	
2	GND	芯片地	
3	LX	升压开关引脚	
4	VOUT	输出端	
5	BAT	电池正极	

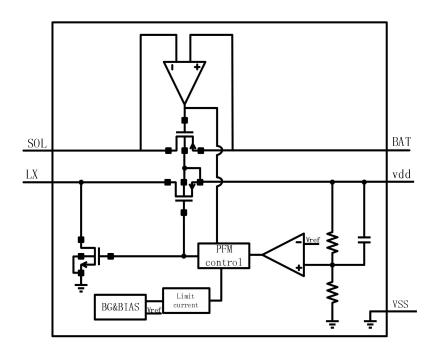
7. 绝对最大额定范围

	描述	范围	单位	
输入	电压(BAT)	-0.3∼5V	V	
-	其他引脚	-0.3∼5V	V	
最大	充电电流I _{CH}	350	mA	
最	大结温范围	150	° C	
工作	作温度范围	-40~125	° C	
储	存温度范围	-65~125	° C	
推		+260 (10S)	° C	
静态放电 (ESD)	HBM (Human Body Mode)	2000	V	
	MM (Machine Mode)	200	٧	
允计	许最大功耗	300	mW	

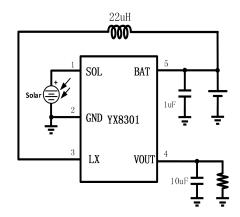
8. 推荐工作条件

描述	范围	单位
工作结温	-40~125	° C
工作环境温度	-40~85	° C
输入电压	0.9~3.3	V
最大输出电流	300	mA

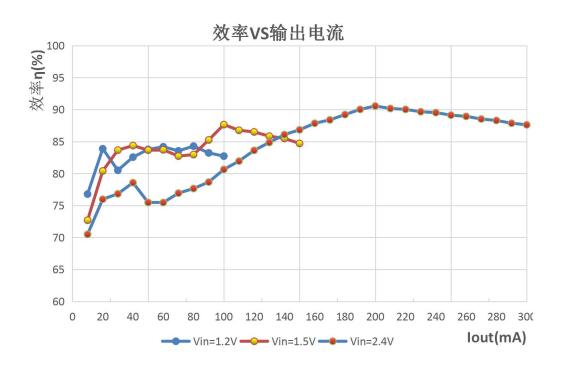
9. 电特性

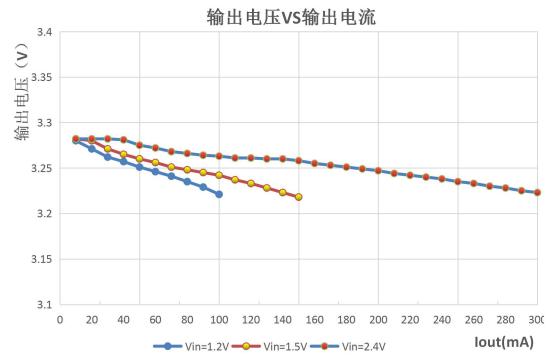

(V_{IN} = V_{OUT}*0.6, C_{IN}=10uF, C_{OUT}=100uF, T_A = 25°C, 除非特别说明)

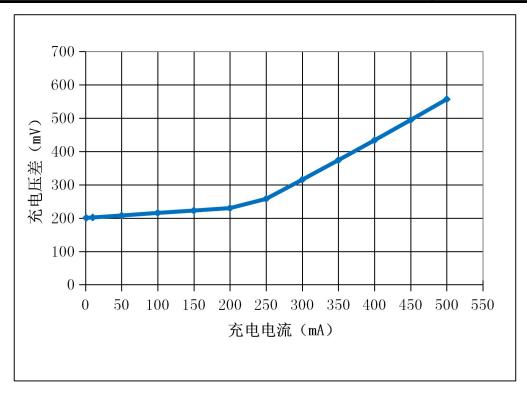
参数	符号	测试条件	最小值	典型值	最大值	单位	
电源输入	电源输入						
输入电压	V _{IN}		0.9		3.3	V	
关断状态电流	IQ	VBAT=1.2V, VSOL=1.2V		16		uA	
导通状态电流	I _{ON}	V _{SOL} 为低		150		uA	
启动电压	V _{START}	Iload=1mA, Vin: 0→2V		0.8	1.0	٧	
维持电压	V _{HOLD}	Iload=1mA, Vin: 2→0V		0.75 ^[1]		V	
VOUT绘山中区	VOLIT	V _{SOL} 为低	VOUT*0.98	VOUT	VOUT*1.02	٧	
VOUT输出电压 	VOUT	VsoL为高		V _{IN}		V	
太阳能控制							
使能输入阈值	V _{π-关}	V _{BAT} =1.2V		0.31		V	
大川川 川川 山	V _{,,∓}	V BAT 1.2 V		0.24		V	
使能输入电阻	R _{SOL-GND}			25		$\mathbf{K} \Omega$	
充电最小压差	VcH∆min	VBAT=1.2V,I _{SOL-OUT} =1mA		180		mV	
充电能力	I _{CH}	VBAT=1.2V, VSOL-OUT=300mV		300		mA	
工作效率							
工作效率	η			85	90 ^[2]	%	


- 注: [1]: 在电池小于其典型值后,输出电压会随着输入电压下降而下降且并不会完全无输出,只有当输入电压小于0.35V以下后,输出电压才接近完全关断。
 - [2]: 条件为: L=22uH (r<0.1Ω), 电容为钽电容。

10. 功能框图




11. 测试电路


12. 典型特性曲线

13. 功能描述

YX8301是一款DC-DC太阳能光控升压控制器,支持 $1\sim2$ 节1.2V充电电池的太阳能产品中.

充放电与使能控制:

SOL引脚接太阳能电池板正极,BAT引脚接可充电电池正极,白天太阳能电池板将光能转化为电能,夜晚可充电电池进行供电并驱动LED。

内部比较器检测SOL与BAT引脚电压,当SOL电压高于BAT引脚电压27%时,芯片进入关机状态,关闭LED灯。当SOL电压低于BAT电压24%时,芯片恢复正常工作,开启LED,从而实现光控功能,进而可以保证白天自动关闭LED,夜晚自动开启LED。此功能不影响SOL对BAT充电功能。

输出电压与静态电流:

太阳能未充电时,此时电路正常升压,实现恒压效果,即VSOL<0.24V,VOUT=3.3V,最大带载能力Vin=2.4V@300mA,此时静态功耗

IQ≈100*3.3/Vin

太阳能充电时,此时内部升压电路关断,输出电压与LX脚电压近似相等,此时静态功耗IQ=16uA,即VSOL>0.31V,VOUT≈VBAT,所以当外围接LED灯应用时时,若输入电压大于LED导通电压,此时LED灯仍会亮,因此在应用时应注意。

PCB布板:

- 1.外部元件尽可能近的接近IC,尽量减小外部元件与IC间的距离。
- 2.VOUT与GND间的电容,应尽量的靠近,以免IC 内部的零极点随着开关电流的变化而变化,这会导致IC 工作不稳定。

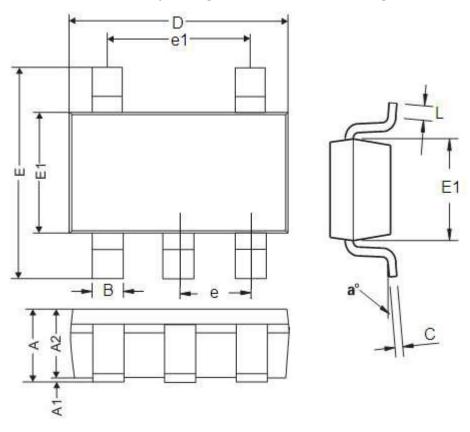
功耗考虑:

芯片结温依赖于环境温度、PCB布局、负载和封装 类型等多种因素。功耗与芯片结温可根据以下公式计 算:

 P_D = $R_{DS(ON)}$ × I_{OUT}^2 根据PD结温可由以下公式求得: T_J = P_D × θ_{JA} + T_A

其中

Tı是芯片结温


TA是环境温度

θJA是封装热阻

14. 封装描述

SOT23-5 package mechanical drawing

DIM	Millimeters		Inches		
	Min	Max	Min	Max	
А	0.9	1.45	0.0354	0.0570	
A1	0	0.15	0	0.0059	
A2	0.9	1.3	0.0354	0.0511	
В	0.2	0.5	0.0078	0.0196	
С	0.09	0.26	0.0035	0.0102	
D	2.7	3.10	0.1062	0.1220	
E	2.2	3.2	0.0866	0.1181	
E1	1.30	1.80	0.0511	0.0708	
е	0.95REF		0.0374REF		
e1	1.90REF		0.0748REF		
L	0.10	0.60	0.0039	0.0236	
a ⁰	00	30 ⁰	00	30 ⁰	