

太阳能草坪灯LED驱动器

特性

- ❖ 输入电压范围:2.7V 至 4.2V
- ❖ 效率高达 95%
- ❖ 过充保护功能
- ❖ 过放保护功能
- ❖ 低使能电压
- ❖ 使能具有施密特特性,确保亮转暗时稳定性
- ❖ 最大 600mA 太阳能充电电流
- ❖ 0V 电池可充电
- ❖ LED 电流可通过电阻调节(0~400mA)
- ❖ 可选的 SOP8 和 DIP8 封装

描述

YX8183 是一款支持太阳能 LED 驱动控制芯片,适用于磷酸铁锂电池和锂离子电池供电的太阳能产品。

YX8183 内部集成 LED 恒流驱动控制电路、锂电池(磷酸铁锂电池和锂离子电池)过充保护和过放保护电路。该控制器具有高转换效率,最高可达 95%,可以减小太阳能电池板的功率要求。同时具有可调输出电流灯特点。

YX8183采用环保的SOP8和DIP8封装以及最少3个外围器件可有效减小电路PCB布板空间。

YX8183可工作于-40°C到+85°C。

应用范围

- ❖ 磷酸铁锂电池及锂离子电池应用
- ❖ 景观照明

典型应用

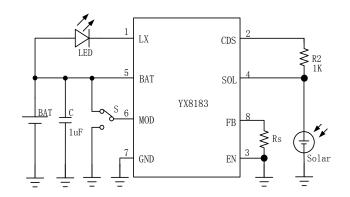


图 1. 典型应用电路

订购信息

器件型号	订购号	封装描述	存储温度	封装标记	包装选择	备注
YX8183	YX8183S08NR	SOP8	-65°C to +125°C		Tape and Reel	
YX8183	YX8183S08NT	DIP8	-65℃ to +125℃		Tube	

引脚信息

SOP/DIP8

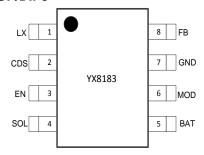


表 1. 引脚描述

SOP、DIP8引脚	名称	引脚功能描述
1	LX	开关引脚
2	CDS	光控控制
3	EN	输出使能端
4	SOL	太阳能电池板正极
5	BAT	电池正极
6	MOD	铁锂/锂电应用选择端,MOD接BAT或悬空为3.2V磷酸铁锂电池应用, MOD接GND为3.7V锂电池应用
7	GND	芯片地
8	FB	反馈输入端

绝对最大额定范围

描述	范围	单位	
输入电压 (BAT)	-0.3 ~ 5.5	V	
其它引脚	-0.3 ~ 5.5	V	
存储温度范围	-65 ~ +125	°C	
结温	150	°C	
焊接温度	焊接温度		
势大边中(FCD)	HBM (Human Body Mode)	2000	V
静态放电(ESD)	MM (Machine Mode)	200	V

热损耗信息

描述		范围	单位
料料加加(0)	SOP8	150	°C/W
封装热阻 (θ _{JA})	DIP8	120	°C/W
THE D AT 25°C	SOP8	0.6	W
功耗, P _D @T _A =25°C	DIP8	0.8	W

推荐工作条件

描述	范围	单位
工作结温	-40 ~ 125	ů
工作环境温度	-40 ~ 85	°C
输入电压	+2.7 ~ +4.2	V
连续输出电流	400	mA

Ver1.0 3 Copyright@2009-2018

电特性

 $(V_{BAT}$ = 3.7V,负载为白光LED VF=3.0V, T_A = 25°C,除非特别说明。)

参数	符号	测试条件	最小值	典型值	最大值	单位	
电源输入							
输入电压范围	V _{BAT}	-	2.7		4.2	V	
输入电流范围	I _{BAT}	-	-		400	mA	
光控关断状态电流	I _{SD}	V_{BAT} =3.7V, V_{SOL} =1.0V		20		μΑ	
过放保护(MOD接BAT)	V_{GFP}	3.2V磷酸铁锂电池应用		2.5		V	
过放释放(MOD接BAT)	V_{GFR}	3.2V磷酸铁锂电池应用		3.0		V	
过放保护(MOD接地)	V_{GFP}	3.7V锂离子电池应用		2.7		V	
过放释放(MOD接地)	V_{GFR}	3.7V锂离子电池应用		3.3		V	
			•				
开关导通电阻	R _{DS(ON)}	V_{BAT} =3.7 V , Rs=1.0 Ω		0.5		Ω	
京 井山 広		V _{BAT} =3.7V		37		μΑ	
空载电流	I _{dd}	VBAT=3.2V		33		uA	
太阳能控制							
法处於》阅 法	V _{т-}	\/ 27\/		0.90		V	
使能输入阈值	V _{美-开}	V _{BAT} =3.7V		0.50		V	
使能输入电阻	R _{SOL-GND}	-		30		ΚΩ	
充电最小压差	Δ V _{CHmin}	V_{BAT} =3.7V, $I_{SOL-BAT}$ =1mA		120		mV	
充电能力	I _{CH}	$V_{BAT}=3.7V$, $V_{SOL-BAT}=320$ mV		600		mA	
过充保护 (MOD接BAT或悬空)	V _{GC}	3.2V磷酸铁锂电池应用	3.6	3.7	3.8	V	
过充保护(MOD接地)	V _{GC}	3.7V锂离子电池应用	4.1	4.2	4.3	V	
EN 使能			•				
EN使能关断状态电流	I _{EN}	$V_{BAT}=3.7V$, $V_{EN}=2.5V$		14		μΑ	
EN使能关断电压	V _{EN(H)}	V _{BAT} =3.7V 2.1				V	
EN使能开启电压	V _{EN(L)}	V _{BAT} =3.7V			1.3	V	
工作效率							
工作效率	η	$V_{BAT}=3.2V$, $R_{S}=1\Omega$		95		%	

功能框图

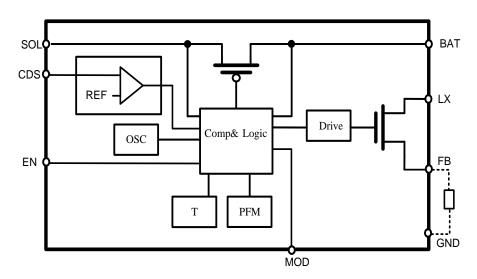
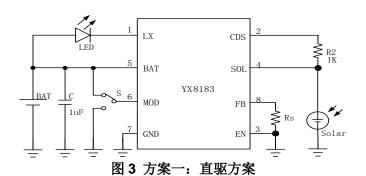
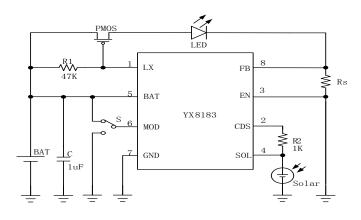
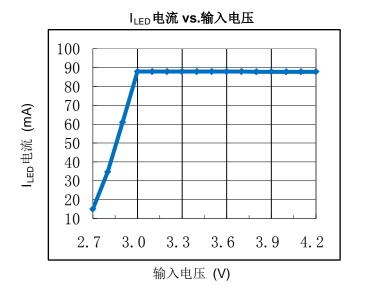
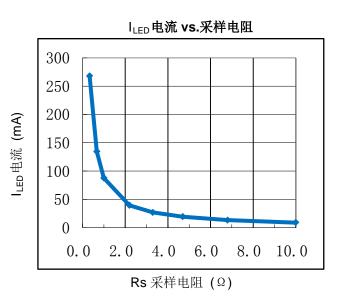
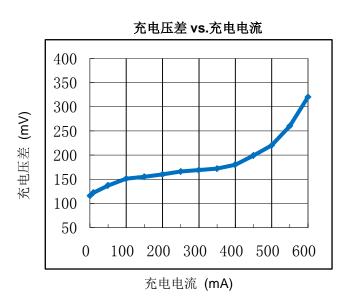



图 2 内部逻辑框图

典型应用


图 4 方案二: PMOS 扩流方案



典型特性曲线

V_{BAT} = 3.7V,Rs=1 Ω, 负载白光LED(VF=3.0V), T_A = 25°C, 除非特殊说明。

功能描述

YX8183 是一款太阳能草坪灯制芯片,适用于单节锂电池 供电的太阳能草坪灯。主要功能有 LED 恒流驱动、充电 控制、光控、过充保护等。

充放电与使能控制

SOL引脚外接太阳能电池板正极,BAT引脚接可充电电池 正极,白天太阳能电池将阳光转化为电能,为电池充电, 夜晚电池放电驱动LED。

当SOL电压高于0.90V时,芯片进入关机状态,关闭LED, 当SOL电压低于0.50V时,芯片恢复正常工作,开启LED, 从而实现光控功能,白天自动关闭LED,夜晚自动开启 LED。此功能不影响SOL对BAT充电功能。

过放与过充控制

当MOD接BAT或悬空选择为3.2V磷酸铁锂电池应用时, 芯片内部逻辑控制单元会将芯片的过放电压控制在 2.5V,过放释放电压控制在3.0V。过充保护电压为3.7V.

当MOD接GND为3.7V锂离子电池应用时,芯片内部逻辑控制单元会将芯片的过放电压控制在2.7V,过放释放电压控制在3.3V。过充保护电压为4.2V.

功能控制

MOD为铁锂/锂电应用选择端, MOD接BAT或悬空为磷酸铁锂电池应用, MOD接GND为锂离子电池应用。

输出电流调节与采样电阻选择

YX8183是一款恒流驱动控制芯片。其输出电流由以下公式求得。

$$I_{\rm LED} = \frac{90mV}{R_s}$$

其中:

I_{LED}是LED驱动电流;

Rs是采样电阻;

90mV为内部基准电压。

注:公式仅供参考,LED的V_F值较大时将影响恒流效果。

采样电阻的选择推荐

典型值,负载为白光LED($V_F=3.0V$)

()					
输入电压	输入/输出电流(mA)	外围参数R _S (Ω)			
	273	0.33			
	90	1.0			
	41	2.2			
3.7V	27	3.3			
	19	4.7			
	13	6.8			
	9.0	10			

注:此参数仅供参考,以实测为准。

功耗考虑

芯片结温依赖于环境温度、PCB布局、负载和封装类型等多种因素。功耗与芯片结温可根据以下公式计算:

$$P_D = R_{DS(ON)} \times I_{OUT}^2$$

根据Pn结温可由以下公式求得:

$$T_J = P_D \times \theta_{JA} + T_A$$

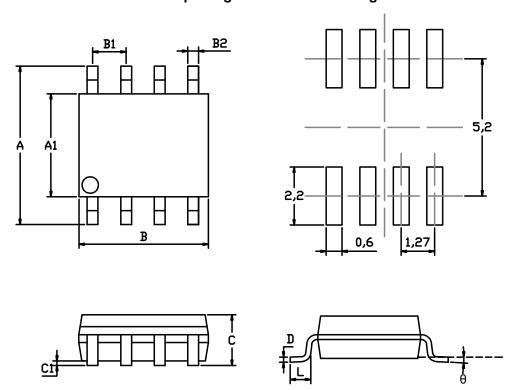
其中

T」是芯片结温

TA是环境温度

θ」A是封装热阻

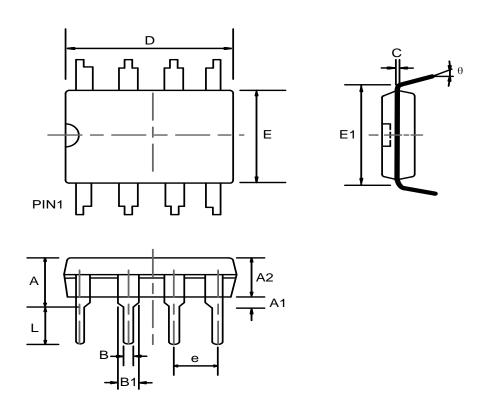
应用注意


应用中为保证系统工作的稳定性,在BAT引脚和GND引脚间外接滤波电容,电容值推荐1µF。

PCB布局时电容尽量靠近芯片引脚端。

封装描述

SOP8 package mechanical drawing


SOP8 package mechanical data

	dimensions				
symbol	millir	neters	inches		
	min	max	min	max	
Α	5.8	6.2	0.2283	0.2441	
A1	3.8	4	0.1496	0.1575	
В	4.8	5	0.1890	0.1969	
B1	1.27		0.0500		
B2	0.31	0.51	0.0122 0.0201		
С		1.75MAX		0.0689MAX	
C1	0.1	0.25	0.0039	0.0098	
L	0.4	1.27	0.0157	0.0500	
D	0.13	0.25	0.0051	0.0098	
θ	0°	8°	0°	8°	

封装描述

DIP8 package mechanical drawing

DIP8 package mechanical data

symbol	dimensions					
	millimeters			inches		
	min	nom	max	min	nom	max
Α		——	4.31	——		0.170
A1	0.38	——	——	0.015		——
A2	3.15	3.40	3.65	0.124	0.134	0.144
В	0.38	0.46	0.51	0.015	0.018	0.020
B1	1.27	1.52	1.77	0.050	0.060	0.070
С	0.20	0.25	0.30	0.008	0.010	0.012
D	8.95	9.20	9.45	0.352	0.362	0.372
E	6.15	6.40	6.65	0.242	0.252	0.262
E1		7.62	——	——	0.300	——
е		2.54			0.100	
L	3.00	3.30	3.60	0.118	0.130	0.142
θ	0°		15°	0°		15°

Ver1.0 9 Copyright@2009-2018