

Asymmetrical Half-Bridge Flyback Controller

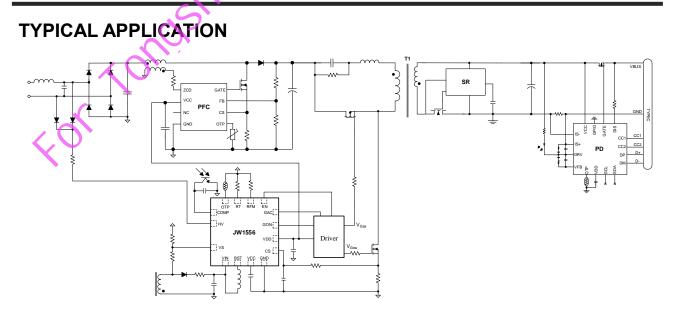
DESCRIPTION

JW1556 is an asymmetrical half-bridge flyback controller for offline flyback converter applications. The JW1556 can be adopted to reduce switching loss and provide high efficiency in whole load range.

JW1556 provide two control outputs, the main power switch control and the auxiliary switch control.

JW1556 also has X-cap discharge function to discharge the X-cap when the input is unplugged, which lowers standby power.

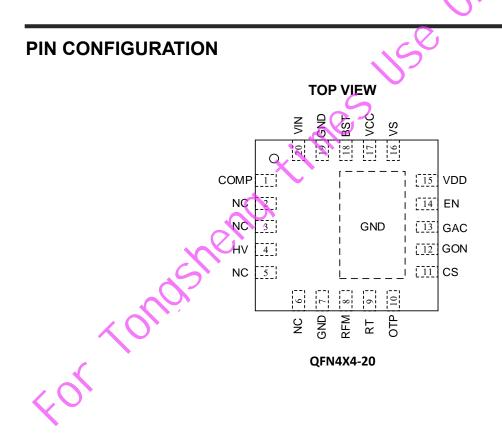
JW1556 is available in QFN4X4-20 package.


Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of Joulwatt Technology Co., Ltd.

FEATURES

- Boundary Mode Operation at Heavy Load
- DCM Operation at Light Load
- Burst Mode Control
- Built-in Soft-start Function
- X-cap Discharge Function
- Include a Boost Converter, Allow Vin Range 2.5-38V
- Maximum Frequency Setting with a Single External Resistor
- Adjustable Line Compensation
- High Switching Frequency up to 1.5MHz
- Reliable Fault Protections: VIN OVP, VS OVP, SCP, Brown-In/Out, OTP, CS Open and Short Protection
- QFN4X4-20 Package

APPLICATIONS


Adaptor

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾
JW1556QFNAH#TR	QFN4X4-20	JW1556 YW 🗆 🗆 🗆 🗆	Green
Package Code Part No.	ine2:	4	

3) All JoulWatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

ABSOLUTE MAXIMUM RATING¹⁾

HV	-0.3 to 600V
VDD	-0.3 to 16V
VIN, BST, VCC	-0.3 to 45V
VS	1.1 to 5V, 5 to 5.5V<10us, -1.3 to -1.1V<10us
GON, GAC, EN	0.3 to 5.5V, 5.5 to 6V<10us
All other Pins	0.3 to 5V, 5 to 5.5V<10us
Junction temperature ^{2) 3)}	150°C
Lead Temperature	
Storage temperature	65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

HV		0V to 500V
VIN		
Operating Junction Temperature		
	15	

THERMAL PERFORMANCE⁴⁾

 θ_{JA} $\theta_{JC(top)}$ $\theta_{JC(bot)}$

Note:

- 1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.
- 2) The JW1556 includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

; or Tong

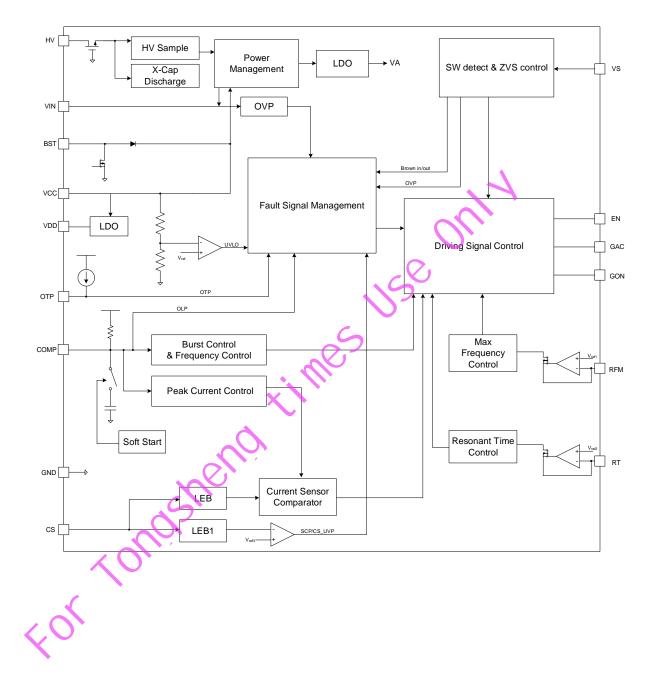
ELECTRICAL CHARACTERISTICS

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNI TS
Supply Voltage Management						
Supply Current from HV	I _{VIN_CH}	VIN=6V, HV=30V	1.2	1.8	2.4	mA
VCC Turn On Threshold	Vcc_on		14	14.8	15.6	V
VCC Turn Off Threshold	Vcc_off		10	10.6	11.2	V
Quiescent Current	lvcc_q	VCC=12V, output not switching	60	130	270	uA
Operation Current	Ivcc_op	VCC=12V,fs=1.5MHz, (C _{GON/GAC} =open	1.6	2	2.4	mA
VCC Pull-down Current before Fault Reset ⁵⁾	Ivcc_rst	150	5	8	11	mA
VIN OVP Threshold	V _{IN_OVP}		38	40.5	43	V
VCC Operation Voltage when Boost Switching	Vcc_min	S	13	14	15	V
VDD Operation Voltage	V _{DD}	() ()	12	13	14	V
VDD Turn On Threshold	Vdd_ok		11	12	13	V
VDD Turn Off Threshold	VDD_OFF		6.5	7	7.5	V
Maximum VDD current	Ivdd	VCC=V _{CC_ON} , VDD=0V	34	40	46	mA
Boost Frequency	fвsт		1.2	1.6	2	MHz
Boost Peak Current	IB_pk		300	330	360	mA
Boost PWM Comparator Propagation Delay ⁵	tB_delay	VIN=6V, L _B =4.7uH	21	35	49	ns
Boost Minimum on Time	t _{BST_MIN_ON}		44	60	76	ns
Boost Minimum off Time	tbst_min_off		68	85	102	ns
Feedback Management (Pin COMP)						
COMP Open Voltage	V _{COMP_OPEN}		2.9	3	3.1	V
Internal Pull-up Resistor	RCOMP		17.5	20	22.5	kΩ
Over-Load Set Point	VCOMP_OLP		2.9	3	3.1	V
COMP Decreasing Level at which the Controller Enters Burst Mode	VCOMPL		310	345	380	mV
COMP Decreasing Level at which the Controller Exits Burst Mode	Vсомрн		360	390	420	mV
Power Limiting Debounce Time	tolp		75	80	85	ms
Internal Soft Start Time	tss		4.5	7.5	10.5	ms

Current Sampling Management (Pir	n CS)					
Leading Edge Blanking Time	tleb	GON	160	185	210	ns
Leading Edge Blanking Time for SCP Protection	tleb1	GON	95	130	165	ns
Maximum on Time	t _{ON_MAX}	GON	10	11.5	13	us
Maximum Current in BUR mode	Vcs_max_bur	COMP=3V	565	630	695	mV
Maximum Current in BCM mode ⁵⁾	Vcs_max_bcm	COMP=3V	500	560	620	mV
Medium Current in BUR mode ⁵⁾	Vcs_mid_bur	COMP=1~2V	/	350	/	mV
Medium Current in BCM mode ⁵⁾	Vcs_mid_bcm	COMP=1~2V	/	280	/	mV
Minimum Current Set Point	Vcs_min	VCC=17V, COMP=0.4V to enter Burst Mode	115	140	165	mV
Short-circuit Protection Set Point	VSCP		0.94	1	1.06	V
CS UVP Threshold	Vcs_uvp	0.	200	245	290	mV
Line-compensation Current Ratio ⁵⁾	K _{LC}	150	/	0.02	/	A/A
Current Comparator Propagation Delay ⁵⁾	t _{D(CS)}	V _{CS} step from 0V to 1V	24	30	36	ns
Output Management (Pin GON/GAC	/EN)	- Q1				
Output High Level	Vн		5	5.25	5.5	V
Output Low Level	VL		/	0.03	0.3	V
Maximum Source Current	Isrc		2.35	2.75	3.15	mA
Maximum Sink Current	Isnk		25	30	35	mA
Delay from EN High to GON High	td(en-gon)		33	39.5	46	us
Delay from GON Low to GAC High ⁵)	t _{D(GON-GAC)}		/	80	/	ns
Frequency and Dead time Managen	nent					
Maximum Switching Frequency	fsw		1.2	1.35	1.5	MHz
Maximum Operating Frequency Set	fмах	$f_{MAX}(kHz) = f_{Burst} + \frac{5^*10^4}{R_{FM}(k\Omega)}$ $R_{FM} = 105 k\Omega$	425	500	575	kHz
Burst Frequency	f _{Burst}		22	26	30	kHz
Frequency Quiver Amplitude ⁵⁾	∆fqvr		/	±8%	/	/
Peak Current Quiver Amplitude ⁵⁾	∆ipk _{QVR}		/	±8%	/	/
Counting Cycles for Quiver ⁵⁾	N _{QVR_CYC}		/	90	/	Cycle
Protection Management					1	
Thermal Shutdown Threshold ⁵⁾	T _{SD}		/	150	/	°C
Thermal Shutdown Recovery Hysteresis ⁵⁾	THYS		/	50	/	°C
Fault Reset Delay Time	t _{FRD}		1.5	1.6	1.7	s
NTC Shut-down Voltage	VNTCTH1		0.9	1	1.1	V

NTC Recovery Voltage	VNTCTH2	2.1	2.25	2.4	V
NTC Pull-up Current, out of Pin	INTC	95	110	125	uA
Brown in Current Threshold ⁵⁾	Ivs_bi	264	300	336	uA
Brown out Current Threshold ⁵⁾	Ivs_bo	176	200	224	uA
Brown out Debounce Time	tво	37.5	40	42.5	ms
VS OVP Current Threshold ⁵⁾	I _{VS_OV}	704	800	896	uA

Note:


For tonosherna times use only

PIN DESCRIPTION

PIN QFN4X4-20	NAME	DESCRIPTION		
1	COMP	Feedback input pin for the controller. Connect to an optocoupler directly.		
2	NC			
3	NC			
4	HV	High voltage input pin. This pin provides source current to charge VIN. It is also used for X-cap discharge when AC input is removed.		
5	NC			
6	NC			
7	GND	Power ground		
8	RFM	Maximum switching frequency setting pin. A resistor RFM is connected to this pin.		
9	RT	Resonant period setting pin. A resistor R_T is connected to this pin. It's used for		
9	KI.	achieving adaptive ZVS function		
10	OTP	External over temperature protection pin. A resistor RNTC is connected to this pin for		
10	011	OTP protection.		
11	CS	Current sensing input pin. The primary switch current is sensed by this pin for peak		
	00	current control.		
12	GON	Main switch logic output pin.		
13	GAC	Auxiliary switch logic output pin.		
14	EN	Enable logic output pin. If entering burst mode or fault conditions, this pin will keep low		
		and shut down GON/GAC.		
15	VDD	13V regulator output pin.		
16	VS 💊	Auxiliary winding voltage sensing pin. Input and output voltages are sensed by this pin		
		from the auxiliary winding. Besides, it is used for ZCD and achieving main switch ZVS.		
17	VCC	Boost output and IC power supply pin.		
18	BST	Boost switching pin. Boost converter inductor is connected from VIN to this pin.		
19	GND	Power ground		
20	VIN	Boost input pin. The Boost converter inductor is connected from this pin to BST.		

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

JW1556 is an asymmetrical half-bridge flyback controller for offline flyback converter applications.

1. Start-Up

Initially, the current source which is drawn from the HV pin charges VCC cap and drives the controller. As soon as VCC reaches turn-on threshold V_{CC_ON} , JW1556 starts switching and the start-up current source turns off after finishing soft start. The system stops switching and start-up current source turns on again when fault is triggered or VCC falls below V_{CC_OFF} .

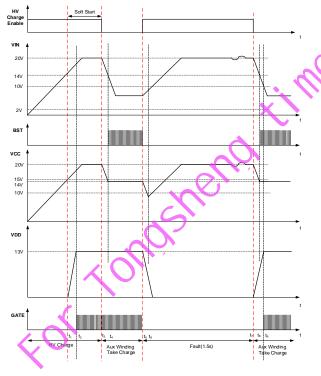
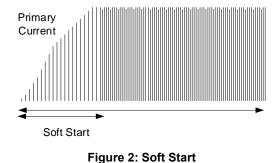



Figure 1: Start up

An internal soft-start circuit is included in JW1556 in order to reduce stress on the primary side switch, secondary diode and smoothly establish the output voltage during start-up. Every restart is followed by a soft start within t_{ss}.

2. Normal Operation

2.1 Peak Current and Frequency Control

JW1556 uses an adaptive multi-mode control to improve overall range efficiency. When load is heavy, JW1556 operates in BCM mode, the peak current is regulated according to the load When COMP condition. decreases, the controller enters BUR mode with N_{BUR} cycles which the peak current and switching frequency are fixed and BUR frequency is changing. NBUR is set to 3 by default. When COMP decreases further, the controller enters DCM(PFM/PWM) mode, the switching frequency is folded back to f_{Burst} while freezing the peak current. When the load decrease to a given level, the controller freezes the frequency at f_{Burst} while decreasing its peak current until JW1556 enters Burst mode. During Burst mode, the peak current reaches its minimum value.

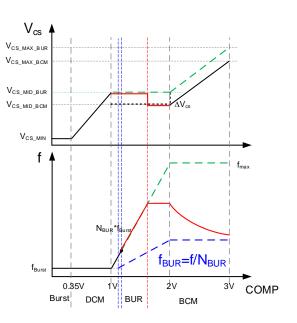


Figure 3: Peak Current and Frequency

JW1556 provides two signals GON and GAC to control the main switch and the auxiliary switch. GON is turned on at the valley of V_{sw} when reaching the setting frequency and turned off when i_{pk} reaching the setting value according to COMP. When GON is off, GAC keeps on after dead time until the magnetizing current falls around 0, then GAC will be turned off.

2.2 BCM Operation

JW1556 operates in boundary conduction mode (BCM) at heavy load. In BCM, the converter operates with ZVS by proper control of GAC.

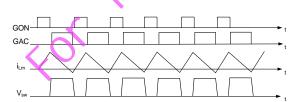


Figure 4: BCM Waveforms

2.3 BUR Operation

When switching frequency reaches the setting frequency decided by comp voltage, JW1556 features BUR operation with N_{BUR} cycles which the peak current and switching frequency are fixed and BUR frequency f_{BUR} is changing.

JoulWatt

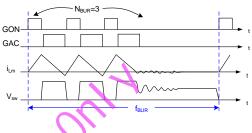


Figure 5: BUR Waveforms

2.3 DCM(PFM/PWM) Operation

JW1556 features discontinuous conduction mode (DCM) operation at light load, where the JW1556 turns off the auxiliary switch when the magnetizing current is zero.

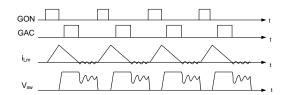


Figure 6: DCM Waveforms

2.4 Burst Operation

JW1556 implements burst mode at no load and light load to lower stand-by power consumption. As the load decreases, the COMP voltage decreases. The controller stops switching when the COMP drops below V_{COMPL} (0.35V) and exit burst mode when COMP exceeds V_{COMPH} (0.4V).

GAC keeps switching during Burst mode the same as DCM mode.

JoulWat

i _{Lm}	
v _{sw} <u>] [] [] [] [] [] []</u>	

Figure 7: Burst Waveforms

3. Other Functions and Features

3.1 Boost Converter

To improve the efficiency of wide range output, JW1556 integrates a Boost converter internally. An inductor between VIN and BST pin is required for proper operation.

3.2 X-Cap Discharge Function

Safety standards such as EN60950/UL62368 require that any X-capacitors in EMI filters on the AC side should be quickly discharged to a safe level when AC cord is unplugged. EN60950 requires that the voltage across X-caps decays to 37% within 1s. EN62368 requires that the voltage across X-caps decays to 60VDC within 2s. Typically, this requirement is achieved by including a resistive discharge element in parallel with the X-cap. However, this resistance causes a continuous power dissipation that impacts the standby power performance.

In order to reduce standby power consumption, JW1556 incorporates the X-cap discharge circuit. This circuit periodically monitors the voltage across the X-cap to detect any possibility that AC source disconnection has occurred, and then discharges the X-cap by internal HV current source to the safety-voltage level within 1s or 2s. Fig.8 shows the X-cap discharge timing diagram.

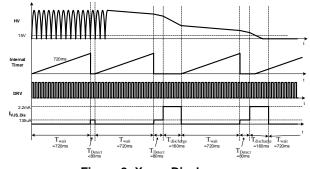


Figure 8: X-cap Discharge

3.3 Resonant Time Setting

The RT pin is used to set the parasitic resonant period to achieve better valley turn-on time. Set t_d to one quarter resonance period in DCM. The t_d is controlled by the resistor connected between RT pin and GND pin which can be represented as

$$t_{\rm d}({\rm ns}) = K_{\rm d} \cdot R_{\rm td}({\rm k}\Omega)$$

Where K_d is the ratio of t_d to $R_{td}(ns/k\Omega)$ and can be approximated as 2.8~3.2.

3.4 Maximum Frequency Setting

The maximum switching frequency limit(f_{MAX}) of JW1556 can be set by RFM pin connected between RFM pin and GND pin to meet different applications which can be represented as

$$f_{\rm MAX}(\rm kHz) = f_{\rm Burst} + \frac{5^*10^4}{R_{\rm FM}(\rm k\Omega)}$$

3.5 QR Frequency Quivering

To achieve good EMI performance, frequency quivering method is integrated in JW1556, which is achieved by peak current and switching frequency perturbation.

3.6 Leading Edge Blanking

In order to avoid the premature termination of the switching pulse due to the parasitic capacitance, an internal leading-edge blanking (LEB) is used

for the current comparator of CS pin. The current comparator is disabled and cannot turn off GON during the blanking time t_{LEB} .

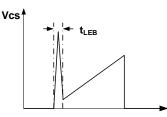
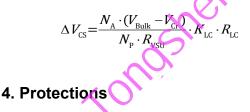



Figure 9: LEB Blanking

3.7 Line Voltage Compensation

During peak current control a propagation delay is impacting the resulting peak current limitation. JW1556 controls the peak primary current in each switching cycle by adding a linecompensation offset voltage on the CS pin through a resistor (R_{LC}) connected between the CS pin and current-sense resistor (R_{CS}). A current source flowing out of CS pin, proportional to the converter's input voltage, creates an offset voltage on R_{LC} . This current level is equal to I_{VS} times a constant gain of K_{LC} when GON is high.

4.1 VIN QVP

VIN is the input voltage for the Boost converter. It has internal OVP protection. Once the fault is triggered, the controller shuts down and restarts after t_{FRD} .

4.2 Brown-in and Brown-out

The line input voltage is detected by VS pin during GON on period, and then compared to the internal run and stop thresholds. A wide separation of run and stop thresholds allows clean start-up and shut-down of the power supply with the line voltage.

4.3 Over Load Protection (OLP)

JW1556 turns off the switch when the power supply undergoes an overload. A fault signal is trigged when COMP pulls up to V_{COMP_OLP} for t_{OLP} . Then the controller shuts down and restarts after t_{FRD} .

4.4 Short-Circuit Protection (SCP)

The JW1556 has short-circuit protection if V_{CS} reaches V_{SCP} after a reduced leading-edge blanking time t_{LEB1} for three consecutive cycles. If SCP is trigged, the controller shuts down and restarts after t_{FRD} .

4.5 CS Pin Open/Short

When CS pin is open, the internal bias current will flow to the parasitic capacitance on the CS pin, V_{CS} will increase. If V_{CS} is above the V_{SCP} within t_{LEB1} , GON will be turned off right now. Once the fault is detected, the controller shuts down and restarts after t_{FRD} .

If CS pin is short, JW1556 will integrate the current from VS pin by keeping VS low when GON is high. If V_{CS} is below the V_{CS_UVP} when the integral reaches 3.05nC, a CS-UVP fault will be asserted and the controller will shut down and restart after t_{FRD} .

4.6 Output OVP(VS OVP)

The output over-voltage protection is detected by the current flowing to VS pin when GAC is high and keeping VS voltage low. If the VS current exceeds over-voltage protection threshold I_{VS_OV} for three consecutive switching cycles, a VS-OVP fault will be asserted and JW1556 will shut down and restart after t_{FRD}.

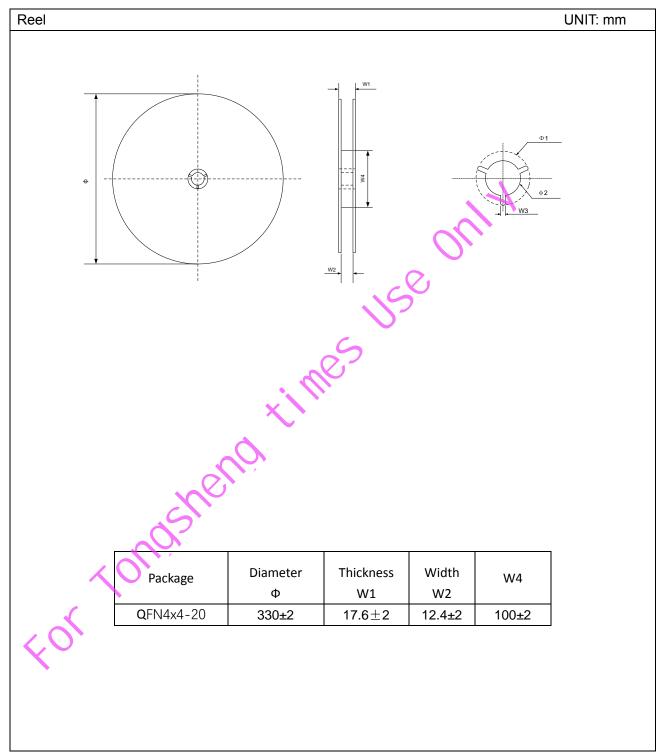
 I_{VS} can be calculated as below

$$I_{\rm VS} = \frac{V_{\rm o} \cdot N_{\rm aux}}{N_{\rm s} \cdot R_{\rm VSU}}$$

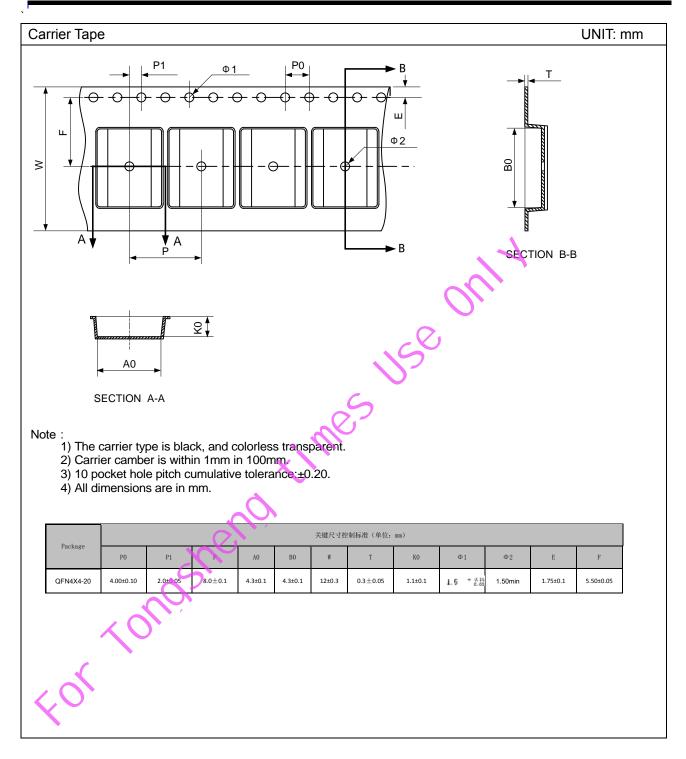
4.7 Over Temperature Protection (OTP)

JW1556 uses an external NTC resistor (R_{NTC}) tied to the OTP pin to program a thermal shutdown temperature near the hotspot of the converter. If the OTP voltage stays lower than the NTC shut-down threshold (V_{NTCTH1}) for 1ms,

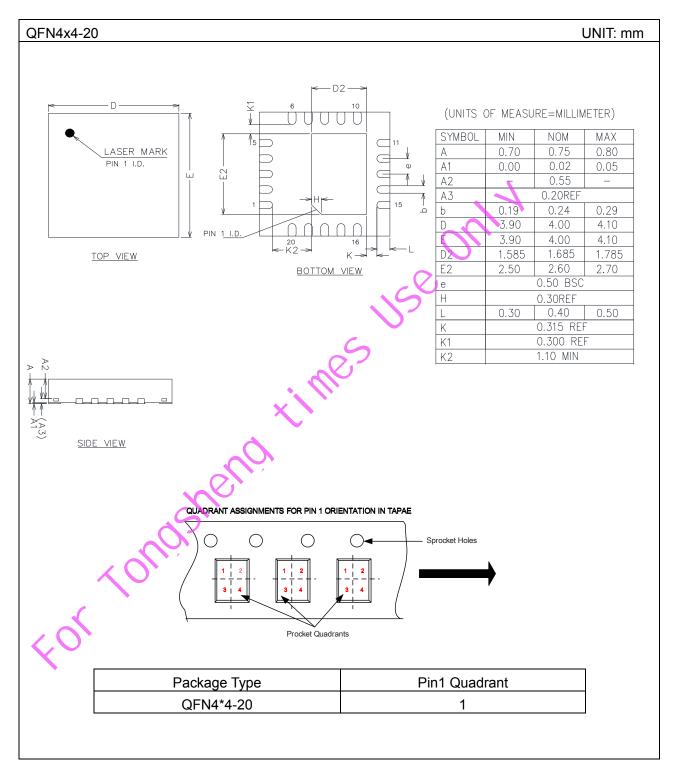
OTP is triggered and JW1556 turns off all of switches. JW1556 resumes operation when OTP voltage stays higher than NTC recovery threshold (V_{NTCTH2}) for 160us.


4.8 Thermal Shutdown

When the junction temperature of JW1556 exceeds T_{SD} , the controller will shut down. JW1556 resumes operation when the temperature drops below T_{SD} - T_{HYS} .


Protection	Sensing	Condition	Delay to action	Action	
VIN OVP	VIN voltage	VIN>V _{IN OVP}	none	VCC UVLO reset	
	VIN VOltage			after t _{FRD}	
Brown-in	VS current	IVS(GON)+IVS(GAC) <ivs_bi< td=""><td>4 GON pulses</td><td>VCC UVLO reset</td></ivs_bi<>	4 GON pulses	VCC UVLO reset	
BIOWII-III	v S current	or I _{VS(GON)} <0.5*I _{VS(GAC)}	4 GON puises	after t _{FRD}	
Brown-out	VS current	$I_{VS(GON)}+I_{VS(GAC)}$	t _{BO} +3 GON	VCC UVLO reset	
Brown-out	v S current	or I _{VS(GON)} <0.5*I _{VS(GAC)}	pulses	after t _{FRD}	
OLP			t	VCC UVLO reset	
OLF	V _{COMP} voltage	Vcomp≥ Vcomp_olp	tolp	after t _{FRD}	
SCP	V _{cs} voltage	V _{CS} ≥ V _{SCP}	3 GON pulse	VCC UVLO reset	
/CS pin Open	VCS VOItage	V CS∠ V SCP		after t _{FRD}	
CS pin Short	V _{cs} voltage	Vcs can't reach Vcs UVP	Every pulse	VCC UVLO reset	
CS pin Short	VCS VOItage	VCSCALLTEACT VCS_UVP		after t _{FRD}	
VS OVP	VS current		3 GON pulses	VCC UVLO reset	
V3 OVF	v3 current	I _{VS(GAC)} >I _{VS_OV}	3 GON puises	after t _{FRD}	
	~~~~			Reset until	
ОТР 🖌	NTC voltage	V _{NTC} <v<sub>NTCTH1</v<sub>	1ms	V _{NTC} >V _{NTCTH2} for	
				160us or VCC UVLO	
Thermal	Junction	TINT	nono	Reset until TJ <tsd-< td=""></tsd-<>	
shutdown	temperature	T _J >T _{SD}	none	T _{HYS} or VCC UVLO	

# **JoulWatt**


### TAPE AND REEL INFORMATION



# **JoulWatt**



# PACKAGE OUTLINE



### **IMPORTANT NOTICE**

- Joulwatt Technology Co.,Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Co.,Ltd does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- JOULWATT TECHNOLOGY CO., LTD PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, SAFETY INFORMATION AND OTHER RESOURCES, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

Copyright © 2021 JoulWatt

All rights are reserved by Joulwatt Technology Co.,Ltd